Germany

Bauma Innovation Award 2022 for Continuous Tunnelling

Herrenknecht AG received the bauma Innovation Award 2022 in the category “Machine Technology” for the new development of continuous tunnelling. The award was given for the next innovation boost in the mechanized production of high-performance tunnel infrastructures in all common soft ground constellations (soft ground formations with and without water-bearing layers). Continuous tunnelling leads to a significant reduction in construction times for longer tunnel sections. With the functional principle of continuous tunnelling, an increase in the total tunneling performance by a factor of up to 1.6 can be achieved compared to the previous discontinuous method
Credit/Quelle: Herrenknecht

With the functional principle of continuous tunnelling, an increase in the total tunneling performance by a factor of up to 1.6 can be achieved compared to the previous discontinuous method
Credit/Quelle: Herrenknecht

Dr.-Ing. E.h. Martin Herrenknecht, founder and CEO of Herrenknecht AG, on the occasion of the award ceremony: “Continuous tunnelling is the next significant innovation step in mechanized tunneling. New underground traffic routes have to be built ever faster. Continuous tunnelling gives clients and contractors a decisive time advantage. Railroad, metro and road tunnels can be built and put into operation significantly faster.”

Savings in Construction Time Particularly on Longer Tunnel Sections

Up to now mechanized tunnelling with shield machines in soft ground has always been a stop-and-go sequential process. Each excavation stroke is followed by the ring building sequence, so that the excavation has to pause and the subsequent driving cycle be only started when the next segmental ring has been completely installed. The interruptions to tunnel advance in soft ground formations caused by these sequential operations costs time when viewed over longer distances. In contrast, a continuous tunnelling process in which the machine can continue excavation while the lining rings are being installed can contribute to considerable savings in construction time.

Basic Principles of Continuous Tunnelling

With regard to tunnelling, the innovation facilitates the following process sequence: In continuous tunnelling, those thrust cylinders that push the machine forward during advance take over the force share of those cylinders that are retracted for ring building. To ensure that the machine reliably maintains on course under these conditions the center of thrust resulting from the combined driving forces of the applied thrust cylinders must remain unchanged in its position. At the heart of continuous tunnelling is therefore a powerful computer system and process-specific software programs that can precisely calculate the necessary pressures in the thrust cylinders. It ensures that the machine operator can reliably control the TBM along the specified alignment as before. The shield operator controls the tunnel boring machine by setting the center of pressure on the new type of control panel. (example representation)
Credit/Quelle: Herrenknecht

The shield operator controls the tunnel boring machine by setting the center of pressure on the new type of control panel. (example representation)
Credit/Quelle: Herrenknecht

CoT System for Safe Control

In continuous advance, the machine operator no longer controls the pressures in the thrust cylinders manually using rotary controls (potentiometers) on the control panel. For this purpose, Herrenknecht has newly developed the Center of Thrust (CoT) system, which helps the shield operator to precisely control the machine. It consists of a display panel that shows the operator the current position of the center of pressure and on which he selects the desired position of the center of thrust. The corresponding control of the thrust cylinders is handled by the algorithms in the computer system.

With continuous tunnelling, an increase in total tunnelling performance of up to a factor of 1.6 can be achieved compared to the previous discontinuous method. The method is currently being used in the major High Speed 2 project – a new rail link between London and Birmingham.

x

Related articles:

Issue 01/2024 Interview

Center of Thrust Steering System: “The Feedback From Operators Has Been Overwhelmingly Positive”

Interview with Emil Nathanson, Innovation Manager at Herrenknecht AG Mr. Nathanson, can you give us more details about the development process? How did you get to this idea and to its implementation?...

more
Issue 01/2016 Award

Werner von Siemens Ring for Tunnel Pioneer Martin Herrenknecht

Dr.-Ing. E.h. Martin Herrenknecht (73) builds the world’s biggest tunnelling machines. The tunnel boring machines produced by his Herrenknecht AG are first choice when spectacular projects are...

more
Issue 05/2016 Germany

Herrenknecht awarded the Diesel Medal for Innovation

The Herrenknecht AG has been honoured with Germany’s oldest prize for innovation. Dr.-Ing. E. h. Martin Herrenknecht, founder and chairman of the board, accepted the Diesel Medal in the “Deutsches...

more
Issue 08/2009 EPB Technology

EPB Technology opens up the soft ground Tunnelling Range

EPB design and assembly are governed by multiple variables, no matter the machine diameter – a sentiment that rings true for a large Robbins EPB TBM currently being assembled at Mexico City’s new...

more
Issue 06/2013 Germany

Deutscher Gründerpreis for Martin Herrenknecht

The Baden company founder and Chairman of the Management Board Dr.-Ing. E.h. Martin Herrenknecht has been awarded the Deutscher Gründerpreis 2013 in the category of Life‘s Work. He received the...

more